UNIVERSITY OF MUMBAI

Syllabus for Semester-III and Semester -IV Program: M.Sc. Course: Computer Science

(Credit Based Semester and Grading System with effect from the academic year 2016–2017)

Preamble

This syllabus is an extension of the syllabus for semester - I and semester – II of MSc Computer Science of University of Mumbai, which came into existence in the academic year 2015-2016. As mentioned in the syllabus of semester I and II, the intended philosophy of the new syllabus is to meet following guidelines:

- Give strong foundation on core Computer Science subjects.
- Expose student to emerging trends in a gradual and incremental way.
- Prepare student community for the demands of ICT industry.
- Offer specialization on a chosen area.
- Create research temper among students in the whole process.

This syllabus for the semester - III and semester – IV has tried to continue the steps initiated in the semester- I and semester –II to meet the goals set. This proposes two core compulsory subjects in semester III. The student has to continue with the tracks they have taken in the semester II as elective subjects. The syllabus also includes project proposal as part of the practical course in elective subjects.

The semester – IV will have one compulsory subject. Student can choose one subject as specialization out of the two electives he or she has been pursuing since the semester – II. That means, there will be four specializations in the semester IV as mentioned below:

- Cloud Computing
- Cyber and Information Security
- Business Intelligence and Big Data Analytics
- Machine Learning

The syllabus also offers an internship and project implementation in the semester – IV, each of which has weights equivalent to a full course. By introducing different electives as tracks in semester –II, espousing more of that tracks in the semester –III and offering the opportunity to choose the specialization based on the tracks pursed in semester –IV

will give the student the added advantage of high level competency in the advanced and emerging areas of computer science. This will definitely equip the student with industry readiness as internship in an IT or IT-related organization gives a practical exposure to what is learned and what is practiced. The strong foundation given in the core courses in different semesters will give enough confidence to the learner to face and adapt to the changing trends and requirements of industry and academia.

As one can easily notice, the syllabus offers lots of emphasis on student driven learning and learning through experience. Research is embedded in the course structure. By introducing Researching Computing in semester – I, Case study in semester – II, Project Proposal in semester – III and Project Implementation in semester – IV (which together has a weightage equivalent to almost two theory courses), the syllabus prepares a strong army of budding computer science researchers. The syllabus designed on the firm believe that by focusing on student driven research on cutting edge and emerging trends with lots of practical experience will make the learning more interesting and stimulating. It is hoped that the student community and teacher colleagues will appreciate the thrust, direction and treatment given in the syllabus.

We thank all our colleagues in the University of Mumbai for their inputs, suggestions and critical observations. We acknowledge the contributions of experts from premier institutions and industry for making the syllabus more relevant. We thank the chairperson and members of the present and previous Adhoc Board of Studies in Computer Science of University for their constant support. Thanks to one and all who have directly or indirectly helped in this venture.

Structure of the syllabus

This is the syllabus for the semester–III and semester–IV of MSc Computer Science program of University of Mumbai to be implemented from the year 2016-2017.

Semester-III

The syllabus offers four theory courses and two practical courses in semester-III. Of the four theory courses, two are compulsory courses. The remaining two are electives. Each elective course has two tracks (track A and track B for elective I and track C and track D for elective II). A student is expected to continue with the track they have chosen in semester-II.

The syllabus proposes four subjects in semester-III. Each subject has theory and practical components.

Semester-III: Theory courses

The four theory courses offered in semester-III are:

- (i) Ubiquitous Computing
- (ii) Social Network Analysis
- (iii) Elective I
 - (a) Track A: Cloud Computing II (Cloud Computing Technologies)
 - (b) Track B: Cyber and Information Security II (Cyber Forensics)
- (iv) Elective II
 - (a) Track C: Business Intelligence and Big Data Analytics II (Mining Massive Data sets)
 - (b) Track D: Machine Learning II (Advanced Machine Learning)

A student is expected to continue with the same tracks he or she has taken in semester-II for elective –I and elective –II. Each of these theory courses (compulsory as well as elective) is of four credits each and is expected to complete in 60 hours. The details are shown in the following table.

Semester	' III —	Theory	courses
----------	---------	--------	---------

Course	Course	Lecture	Credits
Code	Nomenclature	In Hours	
PSCS 301	Ubiquitous Computing	60	4
PSCS 302	Social Network Analysis	60	4
PSCS 3031	Elective I - Track A: Cloud Computing –II		
F3C3 3031	(Cloud Computing Technologies)		
	Elective I - Track B: Cyber and	60	4
PSCS 3032	Information Security- II (Cyber Forensics)		
	Elective II - Track C: Business Intelligence		
PSCS 3033	and Big Data Analytics –II		
	(Mining Massive Data sets)	60	4
	Elective II - Track D: Machine Learning –II		
PSCS 3034	(Advanced Machine Learning)		
Total Credits for Theory courses in Semester III			16

Semester–III: Practical Laboratory Courses

The syllabus proposes two laboratory courses of 4 credits each. The laboratory experiments from the first two theory courses (PSCS301 and PSCS302) are combined together and are proposed as the first practical course (PSCSP5). Similarly, the laboratory experiments from the elective courses are combined together and taken as the second practical course (PSCSP6). The following table summarizes the details of the practical courses in the semester –III.

Course	Course Title	No of hours	Credits
code		nouis	
PSCSP5	Ubiquitous Computing and Social Network	60+60=	04
	Analysis	120	
PSCSP6	Elective I and Elective II	60+60=	04
		120	
Total Credits for Practical Laboratory courses in Semester-III		08	

Semester-III: Practical Laboratory Courses

Project Proposal: The syllabus introduces a project proposal in the semester-III under lab course PSCSP6. As per this, a student is expected to select a topic for project based on the specialization he or she is planning to take in the semester-IV. Needless to say, the project proposal will be based on a topic related to the elective the student has been pursuing in semester –II and semester-III and intends to continue in semester-IV as specialization.

The proposal will contain introduction, related works, objectives and methodology. The implementation, experimental results and analysis will be part of the Project implementation in the semester-IV.

Semester –IV

The syllabus proposes two subjects in semester-IV, each with theory and practical components. In addition, there will be internship with industry and a project implementation. The important feature of the semester-IV is the specialization a student can choose. A student can choose a specialization based on the electives one has been pursuing since semester–II. Since there are two electives in semester-III, a student can drop one and choose the other as the specialization in semester–IV.

Semester–IV: Theory courses

The two theory courses offered in semester-IV are:

- (i) Simulation and Modeling
- (ii) Specialization
 - (a) Track A: Cloud Computing III (Building Clouds and Services)
 - (b) Track B: Cyber and Information Security–III (Cryptography and Crypt Analysis)
 - (c) Track C: Business Intelligence and Big Data Analytics III (Intelligent Data Analysis)
 - (d) Track D: Machine Learning III (Computational Intelligence)

Each of these courses (core as well as the specialization) is expected to complete in 60 hours. The details are given in the following table.

Course Code	Course	Lecture	Credits
	Nomenclature	In Hours	
PSCS 401	Simulation and Modeling	60	4
PSCS 4021	Specialization - Track A: Cloud Computing –III		
1 000 4021	(Building Clouds and Services)		
	Specialization - Track B: Cyber and Information		
PSCS 4022	Security- II (Cryptography and Crypt Analysis)	60	4
PSCS 4023	Specialization - Track C: Business Intelligence and		
F303 4023	Big Data Analytics –III (Intelligent Data Analysis)		
PSCS 4024	Specialization - Track D: Machine Learning –III		
F 503 4024	(Computational Intelligence)		
	Total Credits for Theory courses in Semester-IV		08

Semester-IV: Theory courses

Semester–IV: Practical Laboratory courses

The syllabus proposes one laboratory course of 4 credits. The laboratory experiments from the two theory courses are combined together and are proposed as the first practical course (PSCSP7).

Semester-IV: Practical course

Course code	Course Title	No of hours	Credits
PSCSP7	Simulation & Modeling and Specialization	60+60=	04
		120	

Semester–IV: Internship with industry

The syllabus proposes an internship for about 8 weeks to 12 weeks to be done by a student. It is expected that a student chooses an IT or IT-related industry and formally works as a full time intern during the period. The student should subject oneself with an internship evaluation with proper documentation of the attendance and the type of work he or she has done in the chosen organization. Proper certification (as per the guidelines given in Appendix 1 and 2) by the person, to whom the student was reporting, with Organization's seal should be attached as part of the documentation.

Semester-IV: Internship

Course code	Course Title	No of hours	Credits
PSCSP8	Internship with industry	300	06

Semester–IV: Project Implementation

The syllabus proposes project implementation as part of the semester–IV. The project implementation is continuation of the project proposal the students has submitted and evaluated in semester-III. The student is expected to continue with the proposal made and examined in the semester-III and implement the same in the semester–IV. In addition, experimental set up, analysis of results, comparison with results of related works, conclusion and future prospects will be part of the project implementation. A student is expected to make a project implementation report and appear for a project viva. He or she needs to spend around 200 hours for the project implementation, which fetches 6 credits. The details are given below:

Course code	Course Title	No of hours	Credits
PSCSP9	Project Implementation	200	06

Detailed syllabus of semester- III

	Detailed Synabus of Semester III		
Course Code	Course Title	Credits	
PSCS301	Ubiquitous Computing	04	
Unit I: Basics	of Ubiquitous Computing		
Examples of U	piquitous Computing Applications, Holistic Framework for Ubio	Com: Smart	
DEI, Modeling	g the Key Ubiquitous Computing Properties, Ubiquitou	us System	
Environment Ir	teraction, Architectural Design for UbiCom Systems: Smart	DEI Model,	
Smart Devices	and Services, Service Architecture Models, Service Provision	Life Cycle.	
Unit II: Smart	Mobiles, Cards and Device Networks		
Smart Mobile	Devices, Users, Resources and Code, Operating Systems	for Mobile	
Computers and	Communicator Devices, Smart Card Devices, Device Networ	·ks.	
Human–Compu	uter Interaction (HCI): Explicit HCI, Implicit HCI, User Inte	rfaces and	
Interaction for	Devices, Hidden UI Via Basic Smart Devices, Hidden UI Via	a Wearable	
and Implanted	Devices, Human Centered Design (HCD).		
Unit III: Smart	Environments		
Tagging, Sens	ing and Controlling, Tagging the Physical World, Sensors a	and Sensor	
Networks, Micr	o Actuation and Sensing: MEMS, Embedded Systems and	Real Time	
Systems, Conti	ol Systems.		
Unit IV: Ubiqu	itous Communication		
Audio Network	s, Data Networks, Wireless Data Networks, Universal and T	ransparent	
Audio, Video a	nd Alphanumeric Data Network Access, Ubiquitous Network	s, Network	
Design Issues.			
Text book:			
Ubiquito	us Computing Smart Devices, Environments and Interaction	ons, Stefan	
Poslad,	Wiley, 2009.		
References:			
	• ·· - · · · · · • • • • • • • • •		

- Ubiquitous Computing Fundamentals. John Krumm, Chapman & Hall/CRC 2009.
- Ambient intelligence, wireless networking and ubiquitous computing, Vasilakos, A., & Pedrycz, W. ArtechHouse, Boston, 2006.
- http://www.eecs.qmul.ac.uk/~stefan/ubicom.

Course Code	Course Title	Credits	
PSCS302	Social Network Analysis	04	
Unit I: Introduc	ction to social network analysis (SNA)		
Introduction to r	networks and relations- analyzing relationships to understand	people and	
groups, binary	and valued relationships, symmetric and asymmetric re	lationships,	
multimode rela	tionships, Using graph theory for social networks analysis-	adjacency	
matrices, edge	-lists, adjacency lists, graph traversals and distances,	depth-first	
traversal, bread	dth-first traversal paths and walks, Dijkstra's algorithm, grap	oh distance	
and graph diar	neter, social networks vs. link analysis, ego-centric and s	ocio-centric	
density.			
	ks, Centrality and centralization in SNA networks- density, reachability, connectivity, reciprocity, gro	up-external	
and group-inte	rnal ties in networks, ego networks, extracting and visu	alizing ego	
networks, struc	tural holes, Centrality- degree of centrality, closeness and be	etweenness	
centrality, local and global centrality, centralization and graph centers, notion of			
importance within network, Google pagerank algorithm, Analyzing network structure-			
bottom-up appr	roaches using cliques, N-cliques, N-clans, K-plexes, K-core	s, F-groups	
and top-down a	approaches using components, blocks and cut-points, lambo	da sets and	
bridges, and fac	ctions.		
Unit III: Measu	res of similarity and structural equivalence in SNA		
Approaches to	network positions and social roles- defining equivalence of	or similarity,	
structural equiv	valence, automorphic equivalence, finding equivalence sets,	brute force	
and Tabu sea	and Tabu search, regular equivalence, equivalence of distances: Maxsim, regular		
equivalence, M	equivalence, Measuring similarity/dissimilarity- valued relations, Pearson correlations		
covariance and	d cross-products, Understanding clustering- agglomerative a	and divisive	
clusters, Euclid	dean, Manhattan, and squared distances, binary relations	, matches:	
exact, Jaccard,	exact, Jaccard, Hamming,		
Unit IV: Two-m	node networks for SNA		
Understanding	mode networks- Bi-partite data structures, visualizing two-	mode data,	

Understanding mode networks- Bi-partite data structures, visualizing two-mode data, quantitative analysis using two-mode Singular value decomposition (SVD) analysis,

two-mode factor analysis, two-mode correspondence analysis, qualitative analysis using two-mode core-periphery analysis, two-mode factions analysis, affiliation and attribute networks.

Text book:

- Introduction to Social Network Methods: Robert A. Hanneman, Mark Riddle, University of California, 2005 [Published in digital form and available at http://faculty.ucr.edu/~hanneman/nettext/index.html].
- Social Network Analysis for Startups- Finding connections on the social web: Maksim Tsvetovat, Alexander Kouznetsov, O'Reilly Media, 2011.
- Social Network Analysis- 3rd edition, John Scott, SAGE Publications, 2012.

Reference book:

- Exploratory Social Network Analysis with Pajek, Second edition: Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj, Cambridge University Press, 2011.
- Analyzing Social Networks, Stephen P Borgatti, Martin G. Everett, Jeffrey C. Johnson, SAGE Publications, 2013.
- Statistical Analysis of Network Data with R: Eric D. Kolaczyk, Gábor Csárdi, Springer, 2014.
- Network Analysis: Methodological Foundations, (Editors) Ulrik Brandes, Thomas Erlebach. Springer, 2005.
- Models and Methods in Social Network Analysis: (Editors) Peter J. Carrington, John Scott, Stanley Wasserman, Cambridge University Press, 2005.

Course Code	Course Title	Credits
PSCS3031	Elective I- Track A: Cloud Computing -II	04
	(Cloud Computing Technologies)	
	and Distributed Computing arallel computing, elements of distributed computing, Techr	nologies for
distributed com	puting: RPC, Distributed object frameworks, Service oriented	computing
Virtualization –	Characteristics, taxonomy, virtualization and cloud computing	•
•	i ting Platforms ng definition and characteristics, Enterprise Computing, The i	nternet as a
platform, Cloud	I computing services: SaaS, PaaS, IaaS, Enterprise architec	ture, Types
of clouds.		
Unit III: Cloud Cloud computi	Technologies ng platforms, Web services, AJAX, mashups, multi-tenar	t software
Concurrent co	omputing: Thread programming, High-throughput compu	ting: Task
programming, I	Data intensive computing: Map-Reduce programming.	
	a re Architecture ms, Enterprise software: ERP, SCM, CRM	
Custom enterp	rise applications and Dev 2.0, Cloud applications.	
Text book:		
•	se Cloud Computing Technology, Architecture, Applications, C Cambridge University Press, 2010	Bautam
	g In Cloud Computing, Rajkumar Buyya, Christian Vecchiola Selvi S, Tata Mcgraw-Hill Education, 2013	And
 Cloud C 2009 	omputing: A Practical Approach, Anthony T Velte, Tata Mcgra	w Hill,
References:		
(SaaS, F	ting the Cloud: Design Decisions for Cloud Computing Service PaaS, and IaaS), Michael J. Kavis, Wiley CIO, 2014	
	omputing: SaaS, PaaS, IaaS, Virtualization, Business Models,	Mobile,

Course Code	Course Title	Credits
PSCS3032	Elective I- Track B: Cyber and Information Security- II	04
	(Cyber Forensics)	
Unit I: Compu	ter Forensic Fundamentals: Introduction to Computer Fo	rensics and
objective, the	Computer Forensics Specialist, Use of Computer Foren	sic in Law
Enforcement,	Users of Computer Forensic Evidence, Case Studies,	Information
Security Invest	igations. Types of Computer Forensics Technology: Types	s of Military
Computer Fore	ensic Technology, Types of Law Enforcement Compute	er Forensic
Technology, Ty	pes of Business Computer Forensic Technology, Specialize	d Forensics
Techniques, H	Hidden Data, Spyware and Adware, Encryption Me	thods and
Vulnerabilities,	Protecting Data from Being Compromised, Internet Tracin	g Methods,
Security and V	Vireless Technologies. Types of Computer Forensics Syst	ems: Study
different Securi	ty System: Internet, Intrusion Detection, Firewall, Storage Are	ea, Network
Disaster Recov	very, Public Key Infrastructure, Wireless Network, Satellite	Encryption,
Instant Messag	ing (IM), Net Privacy, Identity Management, Biometric, Identit	y Theft.
Unit II: Data R	Recovery: Data Recovery and Backup, Role of Data Recovery	very, Hiding
and Recovering	Hidden Data. Evidence Collection: Need to Collect the Evide	ence, Types
of Evidences,	The Rules of Evidence, Collection Steps. Computer Image	Verification
and Authentica	tion: Special Needs of Evidence Authentication. Identificati	on of Data:
Timekeeping, F	Forensic Identification and Analysis of Technical Surveilland	ce Devices,
Reconstructing	Past Events: How to Become a Digital Detective, Useable F	ile Formats,
Unusable File F	Formats, Converting Files.	
Unit III: Netw	ork Forensics: Sources of Network Based Evidence, P	rinciples of
Internetworking	, Internet Protocol Suite. Evidence Acquisition: Physical I	nterception,

Internetworking, Internet Protocol Suite. Evidence Acquisition: Physical Interception, Traffic Acquisition Software, Active Acquisition. Traffic Analysis: Protocol Analysis, Packet Analysis, Flow Analysis, Higher-Layer Traffic analysis. Statistical Flow Analysis: Sensors, Flow Record Export Protocols, Collection and Aggregation, Analysis. Wireless: the IEEE Layer 2 Protocol Series, Wireless Access Point, Wireless Traffic Capture and Analysis, Common Attacks, Locating Wireless Devices. Network Intrusion Detection and Analysis: NIDS/NIPS Functionality, Modes of Detection, Types of NIDS/NIPS, NIDS/NIPS Evidence Acquisition.

Unit IV: Network Devices and Mobile Phone Forensics: Sources of Logs, Network Architecture, Collecting and Analyzing Evidence, switches, routers, firewalls, interfaces Web Proxies: Need to Investigate Web Proxies, Functionality, Evidence, Squid, Web Proxy Analysis, Encrypted Web Traffic. Mobile Phone Forensics: Crime and Mobile Phones, Voice, SMS and Identification of Data Interception in GSM, Mobile Phone Tricks, SMS Security, Mobile Forensic.

Text book:

- Computer Forensics Computer Crime Scene Investigation, John R. Vacca, Second Edition, 2005.
- Network Forensics, Sherri Davidoff, Jonathan HAM, Prentice Hall, 2012.
- Mobile Phone Security and Forensic: A Practical Approach, Second Edition, Iosif
 I. Androulidkis, Springer, 2012.

- Digital forensics: Digital evidence in criminal investigation", Angus M.Marshall, John – Wiley and Sons, 2008.
- Computer Forensics with FTK, Fernando Carbone, PACKT Publishing, 2014.
- Practical Mobile Forensics, Satish Bommisetty, Rohit Tamma, Heather Mahalik, PACKT Publishing, 2014.

Course Code	Course Title	Credits	
PSCS3033	Elective I- Track C: Business Intelligence and Big Data	04	
F3C33033	Analytics –II (Mining Massive Data sets)	04	
	, , , , , , , , , , , , , , , , , , ,		
	<mark>ction To Big Data</mark> oduction to Big data Platform, Traits of big data, Cha	allenges of	
conventional sy	vstems, Web data, Analytic processes and tools, Analysis vs	Reporting,	
Modern data a	nalytic tools, Statistical concepts: Sampling distributions, R	e-sampling,	
Statistical Inferen	ence, Prediction error. Data Analysis: Regression modeling,	Analysis of	
time Series: L	inear systems analysis, Nonlinear dynamics, Rule induct	ion, Neural	
networks: Lear	ning and Generalization, Competitive Learning, Principal	Component	
Analysis and N	eural Networks, Fuzzy Logic: Extracting Fuzzy Models from I	Data, Fuzzy	
Decision Trees	, Stochastic Search Methods.		
Unit II: MAP RI	E DUCE Map Reduce: The map tasks, Grouping by key, The rea	duce tasks,	
Combiners, De	tails of MapReduce Execution, Coping with node failures.	Algorithms	
Using MapRed	uce: Matrix-Vector Multiplication, Computing Selections and	Projections,	
Union, Intersec	tion, and Difference, Natural Join. Extensions to MapReduc	e: Workflow	
Systems, Recu	rsive extensions to MapReduce, Common map reduce algorit	hms.	
	LING OF DOCUMENTS Items, Applications of Near-Neighbor Search, Jaccard simila	arity of sets,	
Similarity of doo	cuments, Collaborative filtering as a similar-sets problem, Do	cuments, k-	
Shingles, Choo	osing the Shingle Size, Hashing Shingles, Shingles built fr	rom Words.	
Similarity-Prese	erving Summaries of Sets, Locality-Sensitive hashing for docu	iments. The	
Theory of Local	lity-Sensitive functions. Methods for high degrees of similarity		
	G DATA STREAMS streams concepts – Stream data model and architectu	ire Stream	
	computing, Sampling data in a stream, Filtering streams, Counting distinct elements in a		
	stream, Estimating moments, Counting oneness in a Window, Decaying window, Real		
	Platform(RTAP).		

Text book:

- Mining of Massive Datasets, Anand Rajaraman and Jeffrey David Ullman, Cambridge University Press, 2012.
- Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, Michael Minelli, Wiley, 2013

- Big Data for Dummies, J. Hurwitz, et al., Wiley, 2013
- Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data, Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, Thomas Deutsch, George Lapis, McGraw-Hill, 2012.
- Big data: The next frontier for innovation, competition, and productivity, James Manyika ,Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, Angela Hung Byers, McKinsey Global Institute May 2011.
- Big Data Glossary, Pete Warden, O'Reilly, 2011.
- Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph, David Loshin, Morgan Kaufmann Publishers, 2013

Course Code	Course Title	Credits
PSCS3034	Elective I- Track D: Machine Intelligence - II	04
	(Advanced Machine Learning Techniques)	
Unit I: Probabi A brief review	lity of probability theory, Some common discrete distributi	ons, Some
common contir	nuous distributions, Joint probability distributions, Transfo	rmations of
random vari	ables, Monte Carlo approximation, Information	n theory.
Directed graphi	ical models (Bayes nets): Introduction, Examples, Inference	e, Learning,
Conditional ind	ependence properties of DGMs. Mixture models and EM	1 algorithm:
Latent variable models, Mixture models, Parameter estimation for mixture models, The		
EM algorithm.		

Unit II: Kernels

Introduction, kernel function, Using Kernel inside GLMs, kernel trick, Support vector machines, Comparison of discriminative kernel methods.

Markov and hidden Markov models: Markov models, Hidden Markov Models (HMM), Inference in HMMs, Learning for HMMs. Undirected graphical models (Markov random fields): Conditional independence properties of UGMs, Parameterization of MRFs, Examples of MRFs, Learning, Conditional random fields (CRFs), applications of CRFs.

Unit III: Monte Carlo inference

Introduction, Sampling from standard distributions, Rejection sampling, Importance sampling, Particle filtering, Applications: visual object tracking, time series forecasting, Rao-Blackwellised Particle Filtering (RBPF). Markov chain Monte Carlo (MCMC) inference: Gibbs sampling, Metropolis Hastings algorithm, Speed and accuracy of MCMC.

Unit IV: Graphical model structure learning

Structure learning for knowledge discovery, Learning tree structures, Learning DAG structure with latent variables, Learning causal DAGs, Learning undirected Gaussian graphical models, Learning undirected discrete graphical models. Deep learning: Deep generative models, Deep neural networks, Applications of deep networks.

Text book:

 Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The MIT Press Cambridge (2012).

- Introducing Monte Carlo Methods with R, Christian P. Robert, George Casella, Springer, 2010
- Introduction to Machine Learning (Third Edition): Ethem Alpaydın, The MIT Press (2015).
- Pattern Recognition and Machine Learning: Christopher M. Bishop, Springer (2006)

- Bayesian Reasoning and Machine Learning: David Barber, Cambridge University Press (2012).
- Statistical And Machine Learning Approaches For Network Analysis, Edited By Matthias Dehmer, Subhash C. Basak: John Wiley & Sons, Inc (2012)
- Practical Graph Mining with R: Edited by Nagiza-F-Samatova et al, CRC Press (2014)
- https://class.coursera.org/pgm/lecture/preview

Course Code PSCSP301		Course Title	Credits
		Ubiquitous Computing	02
No		List of Practical Experiments	
1	Design a	nd develop location based messaging app	
2	Design a	nd develop chat messaging app which is a location-bas	sed
3	Design a	nd develop app demonstrating Simple Downstream Me	ssaging
4	Design a	nd develop app demonstrating Send Upstream Messag	es
5	Design a	nd develop app for Device Group Messaging	
6	Impleme	nting GCM Network Manager	
7	Demonst	rate use of OpenGTS (Open Source GPS Tracking Sys	stem)
8	Context-	Aware system	
	Awarene	awareness is a key concept in ubiquitous computing. The ss Framework (JCAF) is a Java-based context-awarene ramming API for creating context-aware applications	
9	Develop	application demonstrating Human Computer Interaction	1
10	Write a J		

List of practical Experiments for Semester –III

Course Code Course Title		Credits	
PSCSP302		Social Network Analysis	02
Sr			1
No		List of Practical Experiments	
1	Write a p	rogram to compute the following for a given a network: (i) nur	mber of
	edges, (ii	i) number of nodes; (iii) degree of node; (iv) node with lowest	degree; (v)
	the adjac	ency list; (vi) matrix of the graph.	
2	Perform 1	following tasks: (i) View data collection forms and/or import or	ne-
	mode/two	o-mode datasets; (ii) Basic Networks matrices transformation	S
3	Compute	the following node level measures: (i) Density; (ii) Degree;	
	(iii) Recip	procity; (iv) Transitivity; (v) Centralization; (vi) Clustering.	
4	For a give	en network find the following: (i) Length of the shortest path fr	rom a given
	node to a	another node; (ii) the density of the graph; (iii) Draw egocentrie	c network of
	node G v	vith chosen configuration parameters.	
5	Write a p	rogram to distinguish between a network as a matrix, a netwo	ork as an
	edge list,	and a network as a sociogram (or "network graph") using 3 c	listinct
	networks	representatives of each.	
6	Write a p	rogram to exhibit structural equivalence, automatic equivalen	ce, and
	regular e	quivalence from a network.	
7	Create so	ociograms for the persons-by-persons network and the comm	ittee-by-
	committe	e network for a given relevant problem. Create one-mode net	twork and
	two-node	e network for the same.	
8	Perform	SVD analysis of a network.	
9	Identify ti	es within the network using two-mode core periphery analysis	S.
10	Find "fact	tions" in the network using two-mode faction analysis.	

Note:

One may use programming languages like R, Python, Pajek etc and open software/ tools like (i) EGONet; (ii) Ora; (iii) Netlogo; (iv) Pajek; and (v) NetDraw; to do the practical experiments.

Cou	rse Code	Course Title	Credits
PSC	SP3031	Practical Course on Elective I-Track A:Cloud Computing-II (Cloud Computing Technologies)	02
Sr			
No		List of Practical Experiments	
1	Execute	& check the performance of existing algorithms using CloudS	im.
2		Cloud Analyst and Integrate with Eclipse/Netbeans. Monitor to nce of an Existing Algorithms.	ne
3	Build an a	application on private cloud.	
4	Demonst	rate any Cloud Monitoring tool.	
5	Evaluate a Private IAAS Cloud using TryStack.		
6	Impleme	nt FOSS-Cloud Functionality - VDI (Virtual Desktop Infrastruc	ture)
7	•	nt FOSS-Cloud Functionality VSI (Virtual Server Infrastructure cture as a Service (IaaS)	e)
8	Impleme	nt FOSS-Cloud Functionality - VSI Platform as a Service (Paa	aS)
9	Impleme	nt FOSS-Cloud Functionality - VSI Software as a Service (Sa	aS)
10	Explore F	FOSS-Cloud Functionality- Storage Cloud	

Cou	rse Code	Course Title	Credits
PSCSP3032		Practical Course on Elective I-Track B: Cyber and Information Security- II (Cyber Forensics)	02
Sr No		List of Practical Experiments	
1	Write a p	rogram to take backup of mysql database	
2	Write a p	rogram to restore mysql database	
3	Use Drive	elmage XML to image a hard drive	
4	Write a p	rogram to create a log file	
5	Write a p	rogram to find a file in a directory	
6	Write a p	rogram to find a word in a file	
7		orensic images of digital devices from volatile data such ager for: (i) Computer System; (ii) Server; (iii) Mobile Device	as memory
8	process with resp	and extract relevant information from Windows Registry for i using Registry View, perform data analysis and bookmark ect to: (i) Computer System; (ii) Computer Network; (iii) Mo ess Network	the findings
9	case sce	e a report based on the analysis done using Registry View enario of the following: (i) Computer System; (ii) Comput e Device; (iv) Wireless Network	
10		new investigation case using Forensic Tool: (i) Computer r Network; (iii) Mobile Device ;(iv) Wireless Network.	System; (ii)

Cou	rse Code	Course Title	Credits
PSCSP3033		Practical Course on Elective II-Track C: Business	02
		Intelligence and Big Data Analytics - II	
		(Mining Massive Data sets -I)	
No		List of Practical Experiments	
1	Generate	e regression model and interpret the result for a given data se	et.
2	Generate	e forecasting model and interpret the result for a given data se	et.
3	Write a	map-reduce program to count the number of occurrenc	es of each
	alphabeti	c character in the given dataset. The count for each lette	r should be
	case-inse	ensitive (i.e., include both upper-case and lower-case vers	sions of the
	letter; Ign	nore non-alphabetic characters).	
4	Write a m	nap-reduce program to count the number of occurrences of e	ach word in
	the giver	n dataset. (A word is defined as any string of alphabetic	characters
	appearing	g between non-alphabetic characters like nature's is two	words. The
	count she	ould be case-insensitive. If a word occurs multiple times i	n a line, all
	should be	e counted)	
5	Write a r	map-reduce program to determine the average ratings of r	novies. The
	input con	sists of a series of lines, each containing a movie number, u	ser number,
	rating and	d a timestamp.	
6	Write a	map-reduce program: (i) to find matrix-vector multiplica	tion; (ii) to
	compute	selections and projections; (iii) to find union, intersection,	difference,
	natural Jo	oin for a given dataset.	
7	Write a p	rogram to construct different types of k-shingles for given do	cument.
8	Write a	program for measuring similarity among documents an	d detecting
	passages	s which have been reused.	
9	Write a p	rogram to compute the n- moment for a given stream where	n is given.
10	Write a p	program to demonstrate the Alon-Matias-Szegedy Algorithm	for second
	moments).	
Note	: The expe	eriments may be done using software/tools like Hadoop / \	NEKA / R /
Java	etc.		

Cou	rse Code	Course Title	Credits
PSC	SP3034	Practical Course on Elective II- Track D: Machine	02
		Intelligence - II (Advanced Machine Learning	
		Techniques)	
Sr			1
No		List of Practical Experiments	
1	Find pro	bability density function or probability mass function,	cumulative
	distributio	on function and joint distribution function to calculate prob	abilities and
	quantiles	for standard statistical distributions.	
2	Create a	Directed Acyclic Graph (DAG) using (i) set of formulae (ii) s	et of vectors
	and (iii) s	set of matrices. Find parents and children of nodes. Read	l conditional
	independ	ence from DAG. Add and remove edges from graph.	
3	Create a	Bayesian network for a given narrative. Set findings and	ask queries
5		y use narratives like 'chest clinic narrative' and package g	
	purpose].		
4	Implemer	nt EM algorithm.	
5	Use strin	ng kernel to find the similarity of two amino acid sequ	ence where
	similarity	is defined as the number of a substring in common.	
6	Demonst	rate SVM as a binary classifier.	
7	Create a	random graph and find its page rank.	
8	Apply ran	ndom walk technique to a multivariate time series.	
9	Implemer	nt two stage Gibbs Sampler.	
10	Implemer	nt Metropolis Hastings algorithm.	

Detailed syllabus of semester – IV

Course Code	Course Title	Credits
PSCS401	Simulation and Modeling	04
Unit I: Introduction to	ction Simulation, Need of Simulation, Time to simulate, Inside	simulation
software: Mode	eling the progress of Time, Modeling Variability, Conceptua	I Modeling:
Introduction to	Conceptual modeling, Defining conceptual model, Requirem	ents of the
conceptual mo	del, Communicating the conceptual model, Developing the	Conceptual
Model: Introdu	iction, A framework for conceptual modeling, methods	of model
simplification.		

Unit II: Model Verification and Validation

Data Collection and Analysis: Introduction, Data requirements, Obtaining data, Representing unpredictable variability, Selecting statistical distributions. Obtaining Accurate Results: Introduction, The nature of simulation models and simulation output, Issues in obtaining accurate simulation results, example model, dealing with initialization bias: warm-up and initial conditions, Selecting the number of replications and run-length. Searching the Solution Space: Introduction, The nature of simulation experimentation, Analysis of results from a single scenario, Comparing alternatives, Search experimentation, and Sensitive analysis. Verification, Validation and Confidence: Introduction, Defining Verification and Validation, The difficulties of verification and validation, Methods of verification and validation, Independent verification and validation.

Unit III: Modeling and simulation modeling

Types of models, Analytical vs Simulation modeling, Application of simulation modeling, Level of abstraction, Simulation Modeling. Methods, System Dynamics, Discrete Event Modeling, Agent Based modeling: Introduction to Agent, Agent-based modeling, Time in agent based models, Space in agent based models, Discrete space, Continuous space movement in continuous space, Communication between agents, Dynamic creation and destruction of agents, Statics on agent population, Condition triggered events and transition in agents. Building agents based models: The problem statement, Phases of modeling, Assumptions, 3 D animation. Dynamics Systems: Stock and flow diagrams, examples of stock and flow diagrams. Multi-method modeling: Architecture, Technical aspects of combining modeling methods, Examples.

Unit IV: Design and behavior of models

Designing state-based behavior: Statecharts, State transitions, Viewing and debugging Statecharts at runtime, Statecharts for dynamic objects. Discrete events and Event model object: Discrete event, Event-the simplest low level model object, Dynamic events, and Exchanging data with external world. Presentation and animation: Working with shapes, groups and colors, Designing interactive models: using controls, Dynamic properties of controls, 3D Animation. Randomness in Models: Probability distributions, sources of randomness in the model, randomness in system dynamics model, random number generators, Model time, date and calendar: Virtual and real time: The model time, date and calendar, Virtual and real-time execution modes.

Text book:

- Simulation: The Practice of Model Development and Use by Stewart Robinson, John Wiley and Sons, Ltd, 2004.
- The Big Book of Simulation Modeling: Multi Method Modeling by Andrei Borshchev, 2013.

- Agent Based Modeling and Simulation, Taylor S, 2014.
- Simulation Modeling Handbook: A Practical Approach, Christopher A. Chung, 2003.
- Object Oriented Simulation: A Modeling and Programming Perspective, Garrido, José M, 2009.
- Simulation, Modeling and Analysis, Averill M Law and W. David Kelton, "Tata McGraw Hill, Third Edition, 2003.
- Process Control: Modeling, Design and Simulation, Wayne Bequette W, Prentice Hall of India, 2003.

Course Code	Course Title	Credits	
PSCS4021	Specialization: Cloud Computing -III	04	
	(Building Clouds and Services)		
Unit I: Cloud R	Reference Architectures and Security		
The NIST defi	nition of Cloud Computing, Cloud Computing reference a	architecture,	
Cloud Computi	ng use cases, Cloud Computing standards. Cloud Computir	ng Security-	
Basic Terms a	ind Concepts, Threat Agents, Cloud Security Threats. Clo	ud Security	
Mechanisms, E	Encryption, Hashing, Digital Signature, Public Key Infrastru	cture (PKI),	
Identity and Ac	cess Management (IAM), Single Sign-On (SSO), Cloud-Bas	ed Security	
Groups, Harder	ned Virtual Server Images.		
Unit II: Cloud	Computing Mechanisms		
Cloud Infrastru	cture Mechanisms, Logical Network Perimeter, Virtual Se	rver, Cloud	
Storage Devi	ce, Cloud Usage Monitor, Resource Replication R	leady-Made	
Environment.	Specialized Cloud Mechanisms, Automated Scaling List	ener, Load	
Balancer, SLA	Monitor, Pay-Per-Use Monitor, Audit Monitor, Failove	er System,	
Hypervisor, Re	esource Cluster, Multi-Device Broker, State Management	Database.	
Cloud Manag	ement Mechanisms, Remote Administration System,	Resource	
Management S	ystem, SLA Management System, Billing Management Syste	m.	
Unit III: Cloud	Computing Architecture		
Fundamental C	loud Architectures, Workload Distribution Architecture, Resou	Irce Pooling	
Architecture, D	ynamic Scalability Architecture, Elastic Resource Capacity A	Architecture,	
Service Load	Balancing Architecture, Cloud Bursting Architecture, E	lastic Disk	
Provisioning	Architecture, Redundant Storage Architecture. Advand	ced Cloud	
Architectures,	Hypervisor Clustering Architecture, Load Balanced Virt	ual Server	
Instances Arch	Instances Architecture, Non-Disruptive Service Relocation Architecture, Zero Downtime		
Architecture,	Architecture, Cloud Balancing Architecture, Resource Reservation Architecture,		
Dynamic Failu	Dynamic Failure Detection and Recovery Architecture, Bare-Metal Provisioning		
Architecture,	Architecture, Rapid Provisioning Architecture, Storage Workload Management		
Architecture.	Architecture.		
		27	

Unit IV: Working with Clouds

Cloud Delivery Model Considerations, Cloud Delivery Models: The Cloud Provider Perspective, Building IaaS Environments, Equipping PaaS Environments, Optimizing SaaS Environments, Cloud Delivery Models: The Cloud Consumer Perspective. Cost Metrics and Pricing Models, Business Cost Metrics, Cloud Usage Cost Metrics, Cost Management Considerations. Service Quality Metrics and SLAs, Service Quality Metrics, Service Availability Metrics, Service Reliability Metrics, Service Performance Metrics, Service Scalability Metrics, Service Resiliency Metrics.

Text book:

- Cloud Computing Concepts, Technology & Architecture, Thomas Erl, Zaigham Mahmood, and Ricardo Puttini, Prentice Hall, 2013.
- Cloud Security A Comprehensive Guide to Secure Cloud Computing, Ronald L.
 Krutz, Russell Dean Vines, Wiley Publishing, Inc., 2010.
- Open Stack Cloud Computing Cookbook, Kevin Jackson, Cody Bunch, Egle Sigler, Packt Publishing, Third Edition, 2015.

- Tom Fifield, Diane Fleming, Anne Gentle, Lorin Hochstein, Jonathan Proulx, Everett Toews, and Joe, Topjian,OpenStack Operations Guide, O'Reilly Media, Inc, 2014.
- NIST Cloud Computing Standards Roadmap, Special Publication 500-291, Version 2, NIST, July 2013, http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
- https://www.openstack.org
- http://cloudstack.apache.org
- http://www.foss-cloud.org/en/wiki/FOSS-Cloud
- http://www.ubuntu.com/cloud/openstack/autopilot

Course Code	Course Title	Credits
PSCS4022	Specialization: Cyber and Information Security	04
	(Cryptography and Crypt Analysis)	

Unit I: Introduction to Number Theory

Topics in Elementary Number Theory: O and notations, time estimates for doing arithmetic-divisibility and the Euclidean algorithm, Congruence: Definitions and properties, linear congruence, residue classes, Euler's phi function, Fermat's Little Theorem, Chinese Reminder Theorem, Applications to factoring, finite fields, quadratic residues and reciprocity: Quadratic residues, Legendre symbol, Jacobi Symbol. (proofs of the theorems are not expected to cover).

Unit II: Simple Cryptosystems

Shift Cipher, Substitution Cipher, Affine Cipher, Vigenère Cipher, Vermin Cipher, Hill Cipher, Permutation Cipher, Stream Cipher, Cryptanalysis of Affine Cipher, Substitution Cipher, Vigenère Cipher and Hill Cipher, Block Ciphers, Algorithm Modes, DES, Double DES, Triple DES, Meet-in-Middle Attack, AES, IDEA algorithm. Cryptographic Hash Functions: Hash Functions and Data Integrity, Security of Hash Functions, Secure Hash Algorithm, Message Authentication Code, Nested MACs, HMAC.

Unit III: RSA Cryptosystem

The RSA Algorithm, Primarily Testing, Legendre and Jacobi Symbols, The Solovay-Strassen Algorithm, The Miller-Rabin Algorithm, Factoring Algorithm: The pollard p-1 Algorithm, Dixon's Random Squares Algorithm, Attacks on RSA, The Rabin Cryptosystem. Public Key Cryptosystems: The idea of public key Cryptography, The Diffie-Hellman Key Agreement, ElGamal Cryptosystem, The Pollard Rho Discrete Logarithm Algorithm, Elliptic Curves, Knapsack problem.

Unit IV: Key Distribution and Key Agreement Scheme

Diffie-Hellman Key distribution and Key agreement scheme, Key Distribution Patterns, Mitchell-Piper Key distribution pattern, Station-to-station protocol, MTI Key Agreement scheme. Public-Key Infrastructure: What is PKI?, Secure Socket Layer, Certificates, Certificate Life cycle, Trust Models: Strict Hierarchy Model, Networked PKIs, The web browser Model, Pretty Good Privacy.

Text book:

- Discrete Mathematics and Its Applications, Kenneth H. Rosen, 7th Edition, McGraw Hill, 2012.
- Cryptography Theory and Practice, 3rd Edition, Douglas R. Stinson, 2005.

Reference:

- Network Security and Cryptography, Atul Kahate, McGraw Hill, 2003.
- Cryptography and Network Security: Principles and Practices, William Stalling, Fourth Edition, Prentice Hall, 2013.
- Introduction to Cryptography with coding theory, second edition, Wade Trappe, Lawrence C. Washington, Pearson, 2005.

Course Code	Course Title	Credits
PSCS4023	Specialization: Business Intelligence and Big Data	04
	Analytics (Intelligent Data Analysis)	
Unit I: Clusteri	ng	
Distance/Simila	rity, Partitioning Algorithm: K-Means; K-Medoids, Partitionin	g Algorithm
for large data	a set: CLARA; CLARANS, Hierarchical Algorithms: Ag	glomerative
(AGNES); Divis	sive (DIANA), Density based clustering: DBSCAN, Cluster	ing in Non-
Euclidean Space	es, Clustering for Streams and Parallelism.	
Unit II: Classifi	cation	
Challongos Di	stance based Algorithm: K nearest Neighbors and kD Trees	Dulas and

Challenges, Distance based Algorithm: K nearest Neighbors and kD-Trees, Rules and Trees based Classifiers, Information gain theory, Statistical based classifiers: Bayesian classification, Document classification, Bayesian Networks. Introduction to Support Vector Machines, Evaluation: Confusion Matrix, Costs, Lift Curves, ROC Curves, Regression/model trees: CHAID (Chi Squared Automatic Interaction Detector). CART (Classification And Regression Tree).

Unit III: Dimensionality Reduction

Introduction to Eigen values and Eigen vectors of Symmetric Matrices, Principal-Component Analysis, Singular-Value Decomposition, CUR Decomposition.

Unit IV: Link Analysis And Recommendation Systems

Link analysis: PageRank, Efficient Computation of PageRank, Topic-Sensitive PageRank, Link Spam. Recommendation Systems: A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering, Dimensionality Reduction.

Text book:

- Mining of Massive Datasets, Anand Rajaraman and Jeffrey David Ullman, Cambridge University Press, 2012.
- Data Mining: Introductory and Advanced Topics, Margaret H. Dunham, Pearson, 2013.

- Big Data for Dummies, J. Hurwitz, et al., Wiley, 2013.
- Networks, Crowds, and Markets: Reasoning about a Highly Connected World, David Easley and Jon Kleinberg, Cambridge University Press, 2010.
- Lecture Notes in Data Mining, Berry, Browne, World Scientific, 2009.
- Data Mining: Concepts and Techniques third edition, Han and Kamber, Morgan Kaufmann, 2011.
- Data Mining Practical Machine Learning Tools and Techniques, Ian H. Witten, Eibe Frank, The Morgan Kaufmann Series in Data Management Systems, 2005.
- Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL and Graph, David Loshin, Morgan Kaufmann Publishers, 2013.

Course Code	Course Title	Credits
PSCS4024	Specialization: Machine Learning -III	04
	(Computational Intelligence)	

Unit I: Artificial Neural Networks

The Artificial Neuron, Supervised Learning Neural Networks, Unsupervised Learning Neural Networks, Radial Basis Function Networks, Reinforcement Learning, Performance Issues.

Unit II: Evolutionary Computation

Introduction to Evolutionary Computation, Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Differential Evolution, Cultural Algorithms, Co-evolution.

Unit III: Computational Swarm Intelligence

Particle Swarm Optimization(PSO) - Basic Particle Swarm Optimization, Social Network Structures, Basic Variations and parameters, Single-Solution PSO. Advanced Topics and applications. Ant Algorithms- Ant Colony Optimization Meta-Heuristic, Cemetery Organization and Brood Care, Division of Labor, Advanced Topics and applications.

Unit IV: Artificial Immune systems, Fuzzy Systems and Rough Sets

Natural Immune System, Artificial Immune Models, Fuzzy Sets, Fuzzy Logic and Reasoning, Fuzzy Controllers, Rough Sets.

Text book:

• Computational Intelligence- An Introduction (Second Edition): Andries P. Engelbrecht, John Willey & Sons Publications (2007).

- Computational Intelligence And Feature Selection: Rough And Fuzzy Approaches, Richard Jensen Qiang Shen, IEEE Press Series On Computational Intelligence, A John Wiley & Sons, Inc., Publication, 2008.
- Computational Intelligence And Pattern Analysis In Biological Informatics, (Editors). Ujjwal Maulik, Sanghamitra Bandyopadhyay, Jason T. L.Wang, John Wiley & Sons, Inc, 2010.

- Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition 1st Edition, Sandhya Samarasinghe, Auerbach Publications, 2006.
- Introduction to Evolutionary Computing (Natural Computing Series) 2nd ed, A.E.
 Eiben , James E Smith, Springer; 2015.
- Swarm Intelligence, 1st Edition, Russell C. Eberhart, Yuhui Shi, James Kennedy, Morgan Kaufmann, 2001
- Artificial Immune System: Applications in Computer Security, Ying Tan, Wiley-IEEE Computer Society, 2016.
- Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches 1st Edition, Richard Jensen, Qiang Shen, Wiley-IEEE Press, 2008

Course Code		Course Title	Credits
PSCSP401		Practical course on Simulation and modeling	02
Sr			<u> </u>
No		List of Practical Experiments	
1	Design a	nd develop agent based model by	
	• Cr	eating the agent population	
	• De	efining the agent behavior	
	• Ac	dd a chart to visualize the model output.	
	[U	se a case scenario like grocery store, telephone call cente	r etc for the
	pu	irpose].	
2	Design a	nd develop agent based model by	
	• Cr	eating the agent population	
	• De	efining the agent behavior	
	• Ac	dding a chart to visualize the model output	
	• Ac	dding word of mouth effect	
	• Co	onsidering product discards	

List of Practical Experiments for Semester –IV

	Considering delivery time
	[Use a case scenario like restaurant].
3	Design and develop agent based model by
	Creating the agent population
	Defining the agent behavior
	 Adding a chart to visualize the model output
	Adding word of mouth effect
	Considering product discards
	Consider delivery time
	Simulating agent impatience
	 Comparing model runs with different parameter values
	[Use a scenario like market model]
4	Design and develop System Dynamic model by
	Creating a stock and flow diagram
	 Adding a plot to visualize dynamics
	Parameter Variation
	Calibration
	[Use a case scenario like spread of contagious disease for the purpose]
5	Design and develop a discrete-event model that will simulate process by:
	Creating a simple model
	Adding resources
	Creating 3D animation
	Modeling delivery
	[Use a case situation like a company's manufacturing and shipping].
6	Design and develop time-slice simulation for a scenario like airport model to
	design how passengers move within a small airport that hosts two airlines, each
	with their own gate. Passengers arrive at the airport, check in, pass the security
	checkpoint and then go to the waiting area. After boarding starts, each airline's
	representatives check their passengers' tickets before they allow them to board.

Verify and validate a model developed like bank model or manufacturing model		
Create defense model to stimulate aircraft behavior		
Stimulate the travelling sales man problem to compute the shortest path.		

Course Code		Course Title	Credits
PSCSP4021		Practical Course on Specialization: Cloud Computing	02
		(Building Clouds and Services)	
Sr		List of Practical Experiments	
No			
1	Develop	a private cloud using an open source technology.	
2	Develop a public cloud using an open source technology.		
3	Explore Service Offerings, Disk Offerings, Network Offerings and Templates.		plates.
4	Explore Working of the following with Virtual Machines		
	• VN	/ Lifecycle	
	• Cr	eating VMs	
	• Ac	ccessing VMs	
	• As	signing VMs to Hosts	
5	Explore V	Vorking of the following with Virtual Machines	
	• Cł	nanging the Service Offering for a VM	
	• Us	sing SSH Keys for Authentication	
6	Explore t	he working of the following: Storage Overview	
	• Pr	imary Storage	

	Secondary Storage	
7	Explore the working of the following: Storage Overview	
	Working With Volumes	
	Working with Volume Snapshots	
8	Explore managing the Cloud using following:	
	Tags to Organize Resources in the Cloud	
	Reporting CPU Sockets	
9	Explore managing the Cloud using following:	
	Changing the Database Configuration	
	File encryption type	
10	Explore managing the Cloud using following:	
	Administrator Alerts	
	Customizing the Network Domain Name	
Note	<u>}</u>	
Reco	ommended Open Source Technologies for completing practical:	
٠	FOSS-Cloud	
٠	Try Stack	
Apache CloudStack		
•	OpenStack	
•	Canonical's OpenStack Autopilot	
	ommended Configuration: Desktop PC Core I5 with minimum 250 GB Hard Drive minimum 8 GB RAM	

Course Code		Course Title	Credits				
PSCSP4022		Practical Course on Specialization: Cyber &	02				
		Information Security (Cryptography and Crypt					
		Analysis)					
Sr		List of Practical Experiments					
No							
1	Write a p	rogram to implement following:					
	• Ch	ninese Reminder Theorem					
	• Fe	rmat's Little Theorem					
2	Write a p	Write a program to implement the (i) Affine Cipher (ii) Rail Fence Technique (iii)					
	Simple Columnar Technique (iv) Vermin Cipher (v) Hill Cipher to perform						
	encryptio	n and decryption.					
3	Write a p decryptio	program to implement the (i) RSA Algorithm to perform en n.	cryption and				
4	Write a	program to implement the (i) Miller-Rabin Algorithm (ii)	pollard p-1				
	Algorithm	to perform encryption and decryption.					
5	Write a p	program to implement the ElGamal Cryptosystem to genera	ate keys and				
	perform e	encryption and decryption.					
6	Write a p	program to implement the Diffie-Hellman Key Agreement	algorithm to				
	generate	symmetric keys.					
7	Write a p	rogram to implement the MD5 algorithm compute the messa	ge digest.				
8	Write a p	rogram to implement different processes of DES algorithm	like (i) Initial				
	Permutat	ion process of DES algorithm, (ii) Generate Keys for DES a	algorithm, (iii)				
	S-Box su	bstitution for DES algorithm.					
9	Write a p	rogram to encrypt and decrypt text using IDEA algorithm.					
10	Write a p	rogram to implement HMAC signatures.					

Cou	rse Code	Course Title	Credits				
PSCSP2023		Practical Course on Specialization:	02				
		Business Intelligence & Big Data Analytics					
		(Intelligent Data Analysis)					
Sr		List of Practical Experiments	I				
No							
1	Pre-proce	ess the given data set and hence apply clustering technic	ques like K-				
	Means, K	C-Medoids. Interpret the result.					
2	Pre-proce	ess the given data set and hence apply partition clustering	algorithms.				
	Interpret	the result					
3	Pre-proce	ess the given data set and hence apply hierarchical algo	orithms and				
	density b	ased clustering techniques. Interpret the result.					
4	Pre-proce	ess the given data set and hence classify the resultant date	ta set using				
		sification techniques. Interpret the result.					
5		ess the given data set and hence classify the resultant data	ta set using				
	Statistica	I based classifiers. Interpret the result.					
6	Pre-process the given data set and hence classify the resultant data set using						
	support v	ector machine. Interpret the result.					
7	Write a p	rogram to explain different functions of Principal Components	<u>.</u>				
1	white a p	rogram to explain unerent functions of Philopar Components).				
8	Write a p	rogram to explain CUR Decomposition technique.					
9	Write a r	program to explain links to establish higher-order relations	hips among				
•		i Link Analysis.	pe eg				
		-					
10	Write a		e Filtering				
	Recomm	ender System.					
The	L experiment	ts may be done using software/ tools like R/Weka/Java etc.					
	1						

Course Code		Course Title					
PSCSP2024		Practical Course on Specialization:	02				
		Machine Intelligence					
		(Computational Intelligence)					
Sr		List of Practical Experiments					
No							
1	Impleme	nt feed forward neural network for a given data.					
2	Impleme	nt Self Organizing Map neural network.					
3	Impleme	nt Radial Basis Function neural network with gradient desc	ent.				
4	 Implement a basic genetic algorithm with selection, mutation and crossove genetic operators. 						
5	Impleme	nt evolution strategy algorithm.					
6	Impleme	nt general differential evolution algorithm.					
7	Impleme	nt gbest and lbest of PSO.					
8	Impleme	nt simple Ant colony optimization algorithm.					
9	Impleme	nt basic artificial immune system algorithm.					
10	Apply different defuzzification methods for centroid calculation of a given fuzzy						
	rule base.						
Note	: The abov	ve practical experiments may use programming languages	like C, Java,				
R et	c						

Scheme of Examination for Theory Courses

There will be internal and external examination for the theory courses. The weightage of internal/external and scheme of examination will be as per common guidelines provided by the University for the PG courses in the faculty of Science.

Scheme of Examination for Practical Courses

There will not be any internal examination for practical courses.

External Examination for practical courses:

The evaluation of the external examination of practical course is given below:

Sr	Semester	Course	Particular		No of	Marks	Total		
No		Code					questions	per	Marks
						question			
			Laboratory e	xperiment					
	111		question		2	40	80		
		PSCSP5	Journal		-	10	10		
1			Viva		-	10	10		
		Ma	arks for each cours	se		100			
		PSCSP6	Laboratory experiment		2	25	50		
			question						
			Journal		-	10	10		
2	III		Viva		-	10	10		
			viva on Project	Documen	tation	10			
			Proposal Presentat		ion	10	30		
				Viva		10			
			Total Marks	1		100			

Sr	Semester	Course	Particular			No of	Marks	Total
No		Code				questions	per	Marks
							question	
			Laborato	Laboratory experiment				
			question			2	40	80
1	IV	PSCSP7	Journal			-	10	10
			Viva			-	10	10
				Total Marks	100			
						ty and	40	
	IV	PSCSP8	late we	Internship	releva			100
			Intern- ship	conduct	Docu	mentation	30	
2					Presentation		30	
				Internship	Viva		50	50
			Total Marks				150)
					Quali	ty and	40	
		PSCSP9	Drojoot	Project	releva			100
			Project	conduct	Docu	mentation	30	
3	IV		Implem entation		Prese	entation	30	
				Project viva	a		50	50
				Total Marks			150)

Guide lines for maintenance of journals:

A student should maintain a journal with at least six practical experiments for each part of the practical course. Certified journals need to be submitted at the time of the practical examination.

Guidelines for Project Proposal in Semester - III

- Student should take a topic related to the specialization he or she is planning to take in Semester-IV.
- Should have studied the related topics in the elective he or she has chosen in semester-II and semester- III
- A student is expected to devote at least 2 to 3 months of study as part of topic selection and its documentation.
- The student should be comfortable to implement the proposal in the semester IV.

Guidelines for Documentation of Project Proposal in Semester –III

Student is expected to make a project proposal documentation which should contain the following:

- **Title:** A suitable title giving the idea about what work is proposed.
- Introduction: An introduction to the topic of around 3-5 pages, giving proper back ground of the topic discussed.
- **Related works:** A detailed survey of the relevant works done by others in the domain. Student is expected to refer at least 5 research papers in addition to text books and web-links in the relevant topic. It may be around 7 to 10 pages.
- **Objective:** A detailed objective of the proposal is needed. It may be of 1 to 2 pages.
- **Methodology:** A proper and detailed procedure of how to solve the problem discussed. It shall contain the techniques, tools, software and data to be used. It shall be of around 3 to 5 pages.

The report may be of around 20 pages, which needs to be signed by the teacher in charge and head of the Department. Students should submit the signed project proposal documentation at the time of viva as part of the University examination.

Guidelines for internship in Semester - IV

- Internship should be of 2 to 3 months with 8 to 12 weeks duration.
- A student is expected to find internship by himself or herself. However, the institution should assist their students in getting internship in good organizations.
- The home institution cannot be taken as the place of internship.
- A student is expected to devote at least 300 hours physically at the organization.
- Internship can be on any topic covered in the syllabus mentioned in the syllabus, not restricted to the specialization.
- Internship can be done, in one of the following, but not restricted to, types of organizations:
 - Software development firms
 - Hardware/ manufacturing firms
 - Any small scale industries, service providers like banks
 - o Clinics/ NGOs/professional institutions like that of CA, Advocate etc
 - o Civic Depts like Ward office/post office/police station/ punchayat.
 - Research Centres/ University Depts/ College as research Assistant for research projects or similar capacities.

Guidelines for making Internship Report in Semester –IV

A student is expected to make a report based on the internship he or she has done in an organization. It should contain the following:

- **Certificate:** A certificate in the prescribed Performa (given in appendix 1) from the organization where the internship done.
- Evaluation form: The form filled by the supervisor or to whom the intern was reporting, in the prescribed Performa (given in appendix 2).

- **Title:** A suitable title giving the idea about what work the student has performed during the internship.
- **Description of the organization:** A small description of 1 to 2 pages on the organization where the student has interned
- Description about the activities done by the section where the intern has worked: A description of 2 to 4 pages about the section or cell of the organization where the intern actually worked. This should give an idea about the type of activity a new employee is expected to do in that section of the organization.
- Description of work allotted and actually done by the intern: A detailed description of the work allotted and actual work performed by the intern during the internship period. Intern may give a weekly report of the work by him or her if needed. It shall be of around 7 to 10 pages.
- Self assessment: A self assessment by the intern on what he or she has learnt during the internship period. It shall contain both technical as well as inter personal skills learned in the process. It shall be of around 2 to 3 pages.

The internship report may be around 15 pages and this needs to be submitted to the external examiner at the time of University examination.

Guidelines for Research Implementation in Semester - IV

- Student should continue with topic proposed and evaluated at the semester III.
- The topic has to be related with the specialization he or she has chosen in the semester IV.
- A student is expected to devote at least 3 to 4 months of efforts for the implementation.
- Student should submit a detailed project implementation report at the time of viva.

Guidelines for Documentation of Project Proposal in Semester –IV

A Student should submit project implementation report with following details:

- **Title:** Title of the project (Same as the one proposed and evaluated at the semester II examination).
- Implementation details: A description of how the project has been implemented. It shall be of 2 to 4 pages.
- Experimental set up and results: A detailed explanation on how experiments were conducted, what software used and the results obtained. Details like screen shots, tables and graphs can come here. It shall be of 6 to 10 pages.
- Analysis of the results: A description on what the results means and how they have been arrived at. Different performing measures or statistical tools used etc may be part of this. It shall be of 4 to 6 pages.
- **Conclusion:** A conclusion of the project performed in terms of its outcome (May be half a page).
- Future enhancement: A small description on what enhancement can be done when more time and resources are available (May be half a page).
- **Program code:** The program code may be given as appendix.

The report may be of around 20 pages (excluding program code), which needs to be signed by the teacher in charge and head of the Department. Student should submit the signed project implementation report along with evaluated copy of the project proposal documentation (of semester –III) at the time of Project evaluation and viva as part of the University examination.

Appendix 1

(Proforma for the certificate for internship in official letter head)

This	is	to	certify	that	Mr/Ms							of
			(College/	Institutior	n worked	as a	an intei	m as p	art of	her	MSc
cours	e in C	omput	er Sciend	ce of Ur	niversity	of Mumba	ai. Th	ne parti	culars o	of inter	nshij	p are
given	below	/:										
Intern	ship s	tarting	date:									
Intern	ship e	nding	date:									
Actua	l numl	ber of	days worl	ked:								
Tenta	tive nu	umber	of hours	worked		Hour	ſS					
Broad	area	of wor	k:									
A sma	all des	criptio	n of work	done b	y the inte	rn during	the p	period:				
Signa	ture:											
Name	:											
Desig	nation	1:										
Conta	ct nur	nber:										
Email	:											

(seal of the organization)

Appendix 2

(Proforma for the Evaluation of the intern by the supervisor/to whom the intern was

reporting in the organization)

Professional Evaluation of intern

Name of intern:_____

College/institution:_____

[Note: Give a score in the 1-5 scale by putting $\sqrt{}$ in the respective cells]

Sr	Particular	Excellent	Very	Good	Moderate	Satisfactory
No			Good			,
1	Attendance					
2	Punctuality					
3	Adaptability					
4	Ability to shoulder responsibility					
5	Ability to work in a team					
6	Written and oral communication skills					
7	Problem solving skills					
8	Ability to grasp new concepts					
9	Ability to complete task					
10	Quality of work done					

Comments:

Signature: Name: Designation: _

Contact number:

Email:

(seal of the organization)